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Abstract In this paper, the long time behavior of a stochastic model is studied when
the Contois growth rate is employed in reactor cascades. We first investigate the exis-
tence and uniqueness of the positive solution of the model. Then it is followed by
the stochastic stability analysis of the equilibria, which is based on the so-called Lya-
punov function. Our study shows that under certain condition, both the washout and
non-washout equilibria are stochastically stable. At the end of this paper, numerical
simulations are carried out to illustrate our theoretical results.

1 Introduction

Waste water is a complex mixture of biodegradable organic materials such as substrates
and microorganisms. The biological treatment of waste water is a method of using
microorganisms to remove substrates or pollutants which can harm the environment,
and has been long used. In order to deeply understand such processes, mathematical
models have been developed, see [1–6] for example, where the deterministic models
have been employed to describe the processes. Denote the concentrations of the sub-
strate and microorganism in bio-reactor by S(t) and X (t). Then we have a model in a
form of the following

{
Ṡ = 1

τ
(S0 − S) − 1

α
Xg(S, X),

Ẋ = 1
τ
(X0 − X) + Xg(S, X) − kd X.
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In order to improve the efficiency of the waste water treatment, some researcher pro-
posed to connect few reactors in series, which results in reactor cascades [7]. This
process can be governed by the following mathematical model.

{
Ṡi = 1

τ
(Si−1 − Si ) − 1

α
Xi g(Si , Xi ),

Ẋi = 1
τ
(Xi−1 − Xi ) + Xi g(Si , Xi ) − kd Xi ,

(1.1)

where Si and Xi are concentrations of the substrate and microorganism in reactor n;
functions g(Si , Xi ), i = 1, 2, . . . , n are the rates of growth of microorganisms, also
known as response functions in biological models. For example Monod’s growth rate

g(S, X) = μm S

Ks + S
,

was used by Sonmezisik et al. [3] and Zhang [5]; Contois’ growth rate

g(S, X) = μmax

(
S/X

Kx + S/X

)

was used in [3,8] and Tessier’s growth rate

g(S, X) = μm

(
1 − exp

(
− S

Ks

))

was used in [1–4]. Which form should be used in a model depends on the reaction
kinetics. It has been suggested that the Contois specific growth rate accurately describes
experimental data when mass-transfer limitations ensure that the underlying kinetic
process is restricted by the available surface area. If the Contois specific growth rate
is selected, after dimensionlization, the function takes the form of g(Si , Xi ) = Si

Si +Xi
.

In this paper, assume due to a noise from the environment, parameter kd is perturbed.
Furthermore, we assume that the growth medium fed into the bioreactor is sterile, i.e.
there are no microorganism in the first reactor at time t = 0 and the dimensionless
substrate concentration in the feed is normalized. In other words, in the rest of this
paper, we make the following assumption

X0 = 0, S0 = 1, kd → kd + σd B(t),

where σ is the noise intensity. Then we reach a mathematical model

{
Ṡi = 1

τ
(Si−1 − Si ) − 1

α
Xi g(Si , Xi ),

Ẋi = 1
τ
(Xi−1 − Xi ) + Xi g(Si , Xi ) − kd Xi − σ Xi

d B(t)
dt , i = 1, 2, . . . , n.

(1.2)

Please notice this is a stochastic model in the Itô form and when σ = 0 (1.2) is the
deterministic model investigated in [7]. Some routine analysis suggest that the i th
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reactor of the model has at most two equilibria: a washout equilibrium Ei (1, 0) and a
non-washout equilibrium

E∗
i = (

S∗
i , X∗

i

)
,

where

X∗
i =

−bi −
√

b2
i − 4ai ci

2ai
,

Ai = S∗
i−1 + X∗

i−1

α
,

Bi = 1 + kdτ

α
,

ai = (Bi − 1)kdτ + Bi (1 − τ) − 1,

bi = (1 − Bi )X∗
i + Ai [(1 − kd)τ − 1],

ci = Ai X∗
i−1,

S∗
i = Ai − Bi X∗

i .

Notice that 0 < kd < 1, from [7] we know that the non-washout equilibrium E∗
i is

physically meaningful if and only if τ > 1
1−kd

. The washout branch is stable when

the non-washout branch is not physically meaningful ( τ < 1
1−kd

). The non-washout
branch is stable when it is physically meaningful. In this paper, we investigate the effect
of the random perturbation on the stability of the equilibria and also the existence of
positive solution.

The rest of this paper is organized as follows. In Sect. 2, we show that a unique
positive solution exists no matter how large the intensities of noises are in the sto-
chastic model. In Sect. 3, we prove that the washout equilibrium Ei in each reactor is
stochastically asymptotically stable under certain condition. In Sect. 4, we shall show
the stochastic stability of the non-washout equilibrium of the first reactor. Also we
show that if the noise is large enough, it can lead to washout in the cascade. In Sect. 5
we conclude the paper with numerical simulations.

2 Existence and uniqueness of the positive solution of model (1.2)

In this section we shall prove that model (1.2) has a unique positive solution for given
positive initial values. It is summarised in the following theorem.

Theorem 2.1 Given initial value (S(0), X (0)) ∈ R2+ = {(x1, x2) ∈ R2 : xi > 0, i =
1, 2}, the model (1.2) has a unique solution

(S1(t), X1(t), S2(t), X2(t), . . . , Sn(t), Xn(t))

for t ∈ [0,∞). Furthermore, the solution will remain in R2n+ with probability 1, namely
(S1(t), X1(t), S2(t), X2(t), . . . , Sn(t), Xn(t)) ∈ R2n+ for all t ≥ 0 almost surely (a.s.).
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Proof It is easy to verify that the coefficients of model (1.2) are locally Lipschitz
continuous. Hence, for any given value (S(0), X (0)) ∈ R2+, there is a unique local
solution (S1(t), X1(t), S2(t), X2(t), . . . , Sn(t), Xn(t)) for t on [0, τe), where τe is the
explosion time.

Next, we can actually prove that τe = ∞, which implies the solution is global a.s..
Assume m0 > 0 is large enough so that

S(0) ∈
[

1

m0
, m0

]
, X (0) ∈

[
1

m0
, m0

]

and for each integer m ≥ m0, define the stopping time as follows

τm = inf

{
t ∈ [0, τe) : Si (t) /∈

(
1

m
, m

)
or Xi (t) /∈

(
1

m
, m

)}
,

where i = 1, 2, 3, . . . , n. For the sake of completeness, for empty set, ∅, we define
the stopping time as inf ∅ = ∞. Note that τm is increasing as m → ∞ and τ∞ =
lim

m→∞τm ≤ τe a.s.. Then in the rest of this section, we only need to demonstrate that
τ∞ = ∞ a.s..

By the proof of contradiction, if this statement is not true, then for any given T > 0
there is a ε ∈ (0, 1) such that P{τ∞ ≤ T } > ε. Hence there is an integer m1 ≥ m0
such that

P{τm ≤ T } ≥ ε for all m ≥ m1. (2.1)

Let f (u) = u − 1 − ln u for u ≥ 0. It is easy to verify that f (0) = limu→0 f (u) > 0,

f (∞) = limu→∞ f (u) > 0 and

f ′(u) = 1 − 1

u
=

⎧⎨
⎩

< 0, for 0 ≤ u < 1,

= 0, for u = 1,

> 0, for u > 1,

which implies f (u) = 0 if and only if u = 1. If on R2+, define the Lyapunov function

V (S1, X1, S2, X2, . . . , Sn, Xn) =
n∑

i=1

α(Si − 1 − ln Si ) +
n∑

i=1

(Xi − 1 − ln Xi ).

Then V (S1, X1, S2, X2, . . . , Sn, Xn) ≥ 0, since α > 0. Using Itô’s formula yields

dV =
n∑

i=1

α

[
d Si − 1

Si
d Si + 1

2S2
i

(d Si )
2

]
+

n∑
i=1

[
d Xi − 1

Xi
d Xi + 1

2X2
i

(d Xi )
2

]

= LV dt +
n∑

i=1

(1 − Xi )σd B(t),
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where

LV =
n∑

i=1

(
α

τ
(Si−1 − Si ) − Xi Si

Xi + Si
− α

τ Si
(Si−1 − Si ) + Xi

Xi + Si
+ 1

τ
(Xi−1 − Xi )

+ Xi Si

Xi + Si
− kd Xi − 1

τ Xi
(Xi−1 − Xi ) − Si

Xi + Si
+ kd + 1

2
α2

)

≤
n∑

i=1

(
α

τ
(Si−1 − Si ) − α

τ Si
Si−1 + α

τ
+ Xi

Xi + Si
+ 1

τ
(Xi−1 − Xi ) + 1

τ
+ kd + 1

2
α2

)

≤
n∑

i=1

(
α

τ
(Si−1 − Si ) + 1

τ
(Xi−1 − Xi )

)
+ n

(
1

τ
+ α

τ
+ 1 + kd + 1

2
α2

)

≤
(

α

τ
(S0 − Sn) + 1

τ
(X0 − Xn)

)
+ n

(
1

τ
+ α

τ
+ 1 + kd + 1

2
α2

)

≤
(

α

τ
S0 + 1

τ
X0

)
+ n

(
1

τ
+ α

τ
+ 1 + kd + 1

2
α2

)
� K .

Therefore,

τm∧T∫
0

dV (S1(r), X1(r), S2(r), X2(r), . . . , Sn(r), Xn(r))

≤
τm∧T∫
0

K dr +
τm∧T∫
0

n∑
i=1

(1 − Xi )σd B(t).

Taking expectation on both sides of the above inequality yields

E[V (S1(τm ∧ T ), X1(τm ∧ T ), . . . , Sn(τm ∧ T ), Xn(τm ∧ T ))] (2.2)

≤ V (S(0), X (0)) + E

τm∧T∫
0

K dr ≤ V (S(0), X (0)) + K T .

For integer m ≥ m1, denote the set of {τm ≤ T } by �m . It then follows from
(2.1) that P(�m) ≥ ε. It implies that for each ω ∈ �m , we have at least one of
Si (τm, ω), Xi (τm, ω) equal to either m or 1

m . Either case will give the following rela-
tion:

V (S1(τm ∧ T ), X1(τm ∧ T ), . . . , Sn(τm ∧ T ), Xn(τm ∧ T ))

≥ α(m − 1 − ln m) ∧ (m − 1 − ln m) ∧ α

(
1

m
− 1 − ln

1

m

)
∧

(
1

m
− 1 − ln

1

m

)
,
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which together with equations (2.1) and (2.2) yields

V (S(0), X (0)) + K T

≥ E[1�m (ω)V (S1(τm ∧ T ), X1(τm ∧ T ), . . . , Sn(τm ∧ T ), Xn(τm ∧ T ))] (2.3)

≥ α(m − 1 − ln m) ∧ (m − 1 − ln m) ∧ α

(
1

m
− 1 − ln

1

m

)
∧

(
1

m
− 1 − ln

1

m

)
.

Here 1�m (ω) is the indicator function of �m . Please note on one hand the left hand
side of (2.3) is independent of m and finite, on the other hand letting m → ∞ leads
to the right hand side infinity. This is a contradiction. Thus τ∞ = ∞ a.s.. ��

3 Asymptotical stability of the washout equilibrium

From Sect. 1 we know that for the deterministic model (1.1), there always exists one sta-
ble washout equilibrium E1 = (S1, X1, S2, X2, . . . , Sn, Xn) = (1, 0, 1, 0, . . . , 1, 0)

when τ < 1
1−kd

. And obviously it is still a equilibrium of the stochastic model (1.2). In
this section, our intention is to investigate the stochastic effects on the stability of E1.

Our main result will be stated in Theorem 3.3. In order to prove our main result here,
we need some preliminaries from previous work, for example [9], based on which we
list these preliminaries as two lemmas below for self-contained.

Assume an n-dimensional differential equation has the form

d X (t) = f (t, X (t))dt + g(t, X (t))d B(t), (3.1)

where B(t) is an m-dimensional Brownian motion and f (t, X (t)) : [t0,+∞)× Rn →
Rn, g(t, X (t)) : [t0,+∞) × Rn → Rn×m . And we assume that f (t, X (t)) and
g(t, X (t)) satisfies the local Lipschitz condition. The linearization of (3.1) is

d X (t) = F(t, X (t))dt + G(t, X (t))d B(t). (3.2)

By establishing Lyapunov functions, we can obtain the following lemma, which pro-
vides conditions for various types of stability for linear stochastic model (3.2).

Lemma 3.1 Suppose that there exists a non-negative function V (t, x) ∈ C2(R × R),

two continuous functions a(·) and b(·) and a positive constant K such that, for |x | <

K ,

a(|x |) ≤ V (t, x) ≤ b(|x |).

We have

(i) if LV ≤ 0, x ∈ [0, K ], then the solution of (3.2) is stable in probability 1.
(ii) if there exists a continuous function C : R+ → R+, such that LV ≤ −C(|x |),

then the trivial solution of (3.2) is stochastically asymptotically stable.
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Many problems concerning the stability of the equilibrium in a nonlinear stochastic
model can be reduced to problems concerning the stability of solutions in the associated
linear model.

Lemma 3.2 ([9] Theorem 2.2) If linear model (3.2) with constant coefficients (F(t) =
F, G(t) = G) is stochastically asymptotically stable, and the coefficients of (3.1) and
(3.2) satisfy the inequality

| f (t, X) − F · X | + |g(t, X) − G · X | < δ |X |

in a sufficiently small neighborhood of the point X = 0 and with a sufficiently small
constant δ, then the trivial solution X (t) = 0 of (3.1) is stochastically asymptotically
stable.

We now give sufficient conditions for the stability of the stochastic model (1.2)

Theorem 3.3 When τ < 1
1−kd

, the washout equilibrium E = (S1, X1, S2, X2, . . . ,

Sn, Xn) = (1, 0, 1, 0, . . . , 1, 0) of model (1.2) is stochastically asymptotically stable
if the intensity of the noise, σ satisfies

σ 2 ≤ 2

τ
− 2 + 2kd .

Proof Consider the model equations for the first reactor of the cascade system (1.2)

⎧⎪⎪⎨
⎪⎪⎩

Ṡ1 = 1

τ
(S0 − S1) − 1

α

X1S1

X1 + S1
,

Ẋ1 = 1

τ
(X0 − X1) + X1S1

X1 + S1
− kd X1 − σ X1

d B(t)

dt
.

(3.3)

We next prove that the washout equilibrium E1 = (S1, X1) = (1, 0) of the first
reactor is stochastically asymptotically stable when σ 2 ≤ 2

τ
− 2 + 2kd . It will imply

the washout equilibrium E = (S1, X1, S2, X2, . . . , Sn, Xn) = (1, 0, 1, 0 . . . , 1, 0) of
the model (1.2) is stochastically asymptotically stable.

First, performing a transformation Z1(t) = S1(t) − S0, Z2(t) = X1(t) changes
model (3.3) into

⎧⎪⎪⎨
⎪⎪⎩

Ż1 = − 1

τ
Z1 − 1

α

Z2(Z2 + S0)

Z2 + Z1 + S0
,

Ż2 = − 1

τ
Z2 + Z2(Z2 + S0)

Z2 + Z1 + S0
− kd Z2 − σ Z2

d B(t)

dt
.

(3.4)

Linearizing it at the origin (0, 0), then we get

{
Ż1 = − 1

τ
Z1 − 1

α
Z2,

Ż2 = − 1
τ

Z2 + Z2 − kd Z2 − σ Z2
d B(t)

dt .
(3.5)
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Our proof will then be split into 2 steps: firstly, to prove the stability of the equilibrium
of (3.5), and secondly, to prove the stability of the equilibrium of (3.4). Following this
idea, we next show the equilibrium (Z1, Z2) = (0, 0) of model (3.5) is stochastically
asymptotically stable. To this end we define a Lyapunov function, V , by

V = Z2
1 + Z2

2 + AZ2

with A is a positive constant to be selected according to our needs. Along the trajec-
tories of model (3.5) we have

dV = 2Z1d Z1 + (d Z1)
2 + 2Z2d Z2 + (d Z2)

2 + Ad Z2

= LV dt +
(
−2σ Z2

2 − Aσ Z2

)
d B(t),

where

LV = −2

τ
Z2

1 − 2

α
Z1 Z2 − 2

τ
Z2

2 + 2Z2
2 − 2kd Z2

2 + σ 2 Z2
2 +

(
− A

τ
+ A − Akd

)
Z2

= −2

τ
Z2

1 − 2

α
Z1 Z2 +

(
−2

τ
+ 2 − 2kd + σ 2

)
Z2

2 + A

(
− 1

τ
+ 1 − kd

)
Z2.

We claim that LV is a negative definite, which implies the (0, 0) origin of (3.5) is
globally stochastic asymptotically stable. In fact,

(i) If Z1 ≥ 0, then

LV ≤ −2

τ
Z2

1 +
(

−2

τ
+ 2 − 2kd + σ 2

)
Z2

2 .

Obviously we can get LV ≤ 0 when σ 2 ≤ 2
τ

− 2 + 2kd . And LV = 0 if and only
if Z1 = Z2 = 0.

(ii) If Z1 < 0, we can get −Z1 < S0 from S1 = Z1 + S0 > 0, then

LV ≤ −2

τ
Z2

1 + 2

α
S0 Z2 +

(
−2

τ
+ 2 − 2kd + σ 2

)
Z2

2 + A

(
− 1

τ
+ 1 − kd

)
Z2.

In this case, choosing

A =
2
α

S0

− 2
τ

+ 2 − 2kd

yields

LV ≤ −2

τ
Z2

1 +
(

−2

τ
+ 2 − 2kd + σ 2

)
Z2

2 .
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Again, when σ 2 ≤ 2
τ

− 2 + 2kd , LV ≤ 0, and LV = 0 if and only if Z1 = Z2 = 0.
So far we have proved that LV is negative definite. Next, we show that the origin (0,0)
of model (3.4) is also stochastically asymptotically stable, which implies the washout
equilibrium E1(1, 0) of model (3.3) is stochastically asymptotically stable. Notice

| f (t, X) − F · X | + |g(t, X) − G · X |

=
√(

1

α
Z2 − 1

α

Z2(Z1 + S0)

Z2 + Z1 + S0

)2

+
(

Z2(Z1 + S0)

Z2 + Z1 + S0
− Z2

)2

=
√

1 + 1

α2

∣∣∣∣Z2 − Z2(Z1 + S0)

Z2 + Z1 + S0

∣∣∣∣
=

√
1 + 1

α2

∣∣∣∣∣
Z2

2

Z2 + Z1 + S0

∣∣∣∣∣ .

For small ε > 0, when Z1 < ε,Z2 < ε, choose l =
√

1 + 1
α2 , it follows that

| f (t, X) − F · X | + |g(t, X) − G · X | ≤ l

∣∣∣∣ Z2

Z2 + Z1 + S0

∣∣∣∣ ε ≤ lε.

Then from Lemmas 3.1 and 3.2, the washout equilibrium E1(1, 0) of model (3.4) is
stochastically asymptotically stable.

Therefore when t is really large, we have S1 = 1, X1 = 0 which flows into the
second reactor of the cascade. It is similar with the first reactor. Easily we can get the
washout equilibrium E2(1, 0) is stochastically asymptotically stable. Similar argu-
ments can prove Ei (1, 0) is stochastically asymptotically stable. So when τ < 1

1−kd
,

the washout equilibrium E = (S1, X1, S2, X2, . . . , Sn, Xn) = (1, 0, 1, 0, . . . , 1, 0)

of model (1.2) is stochastically asymptotically stable if σ satisfies σ 2 ≤ 2
τ

− 2 + 2kd .

This completes the proof. ��
This Theorem tells us that the washout equilibrium E is stable if the noise is

bounded.

4 Asymptotic behavior of the noise perturbed non-washout equilibrium

Generally, E∗ is not an equilibrium solution of the stochastic model (1.2) any more if
σ = 0. As in this paper σ is small and we treat (1.2) as the perturbation of model (1.1)
which has an non-washout equilibrium E∗, it is reasonable to consider the microor-
ganism to be persist if solution of model (1.2) is going around E∗ at the most of time.
In this sense, investigating the asymptotic behavior still makes sense. And we have
conclusion as follows.

Theorem 4.1 Assume σ 2 ≤ 1
τ
+kd −

(
1
τ

+ kd
2

)
1
n

∑n
i=1

(
1 − x∗

i

x∗
i +s∗

i +4
x∗
i
α

)
. Then we

have
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lim
t→∞ sup

1

t
E

t∫
0

n∑
i=1

[
(Si (u) − S∗

i )2 + r2
i (Xi (u) − X∗

i )2
]

du ≤ kσ ,

where (S1(t), X1(t), . . . , Sn(t), Xn(t)) is a solution of model (1.2) associated with
the initial value (S1(0), X1(0)) ∈ R2+, and

r2
i =

− 2
τ

+ max

{(
1
τ

+ kd
2

)
,
( 2

τ
+ kd

) (
1 − X∗

i

X∗
i +S∗

i +4
X∗

i
α

)}

2σ 2 − 2
τ

− 2kd + ( 2
τ

+ kd
) (

1 − X∗
i

X∗
i +S∗

i +4
X∗

i
α

) α2,

kσ = c

−2σ 2 + 2
τ

+ 2kd − ( 2
τ

+ kd
) (

1 − X∗
i

X∗
i +S∗

i +4
X∗

i
α

) ,

c = 2(α + 1)2

τ
n +

n∑
i=1

2σ 2 X∗2
i +

n∑
i=1

(
2α

τ
+ αkd

) (
X∗

i + S∗
i

)
σ 2 X∗2

i .

Proof Construct a Lyapunov function

V =
n∑

i=1

[
α
(
Si − S∗

i

) + (
Xi − X∗

i

)]2

+
n∑

i=1

(
4α

τ
+ 2αkd

) (
X∗

i + S∗
i

) (
Xi − X∗

i − X∗
i ln

Xi

X∗
i

)
.

Differentiating it along the trajectory of (1.2) yields

dV =
n∑

i=1

2
[
α
(
Si − S∗

i

) + (
Xi − X∗

i

)]
(αd Si + d Xi ) +

n∑
i=1

α(d Si )
2 +

n∑
i=1

(d Xi )
2

+
n∑

i=1

(
4α

τ
+ 2αkd

)
(X∗

i + S∗
i )

[(
1 − X∗

i

Xi

)
d Xi + X∗

i

2X2
i

(d Xi )
2

]

= LV dt −
[

2σ

n∑
i=1

Xi
(
α
(
Si − S∗

i

) + (
Xi − X∗

i

))

+ σ

n∑
i=1

(
4α

τ
+ 2αkd

) (
X∗

i + S∗
i

) (
Xi − X∗

i

)]
d B(t),
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where

LV =
n∑

i=1

2
[
α
(
Si − S∗

i

) + (
Xi − X∗

i

)]

×
(

α

τ
(Si−1 − Si ) − 1

τ
(Xi−1 − Xi ) − kd Xi

)

+
n∑

i=1

σ 2 X2
i +

n∑
i=1

(
4α

τ
+ 2αkd

) (
X∗

i + S∗
i

)

×
[(

Xi − X∗
i

) ( 1

τ Xi
(Xi−1 − Xi ) + Si

Xi + Si
− kd

)
+ σ 2 X∗

i

2

]
.

Note that − X∗
i X∗

i
X∗

i +S∗
i

= 1
τ

X∗
i−1 − 1

τ
X∗

i − kd X∗
i . Then we have

α

τ
S∗

i−1 − α

τ
S∗

i + 1

τ
X∗

i−1 − 1

τ
X∗

i − kd X∗
i = 0

and

n∑
i=1

[
2α(Si − S∗

i ) + 2
(
Xi − X∗

i

)] (α

τ
Si−1 − α

τ
Si + 1

τ
Xi−1 − 1

τ
Xi − kd Xi

)

=
n∑

i=1

[
2α

(
Si − S∗

i

) + 2
(
Xi − X∗

i

)] [α

τ
Si−1 − α

τ
Si + 1

τ
Xi−1 − 1

τ
Xi − kd Xi

−
(

α

τ
S∗

i−1 − α

τ
S∗

i + 1

τ
X∗

i−1 − 1

τ
X∗

i − kd X∗
i

)]

=
n∑

i=1

[
−2α2

τ
(Si − S∗

i )2 +
(

−2

τ
− 2kd

) (
Xi − X∗

i

)2 +
(

−4α

τ
− 2αkd

)

× (
Xi − X∗

i

) (
Si − S∗

i

) + (
2α

(
Si − S∗

i

) + 2
(
Xi − X∗

i

)) α

τ

(
Si−1 − S∗

i−1

)

+ (2α(Si − S∗
i ) + 2(Xi − X∗

i ))
1

τ

(
Xi−1 − X∗

i−1

)]

≤
n∑

i=1

[
−2α2

τ
(Si − S∗

i )2 +
(

−2

τ
− 2kd

)
(Xi − X∗

i )2

+
(

−4α

τ
− 2αkd

) (
Xi − X∗

i

)
(Si − S∗

i ) + 2(α + 1)2

τ
n

]
,

123



1452 J Math Chem (2014) 52:1441–1459

which imply the following holds.

n∑
i=1

σ 2 X2
i =

n∑
i=1

σ 2(Xi − X∗
i + X∗

i )2

≤
n∑

i=1

[
2σ 2(Xi − X∗

i )2 + 2σ 2 X∗
i

2
]
.

Given the facts that X∗
i ∈ [0, 1] and S∗

i ∈ [0, 1], Si (t) and Xi (t) are real numbers
satisfing 0 < Si (t) ≤ 1, 0 < Xi (t) ≤ 1, we have

n∑
i=1

(
4α

τ
+ 2αkd

) (
X∗

i + S∗
i

) (
Xi − X∗

i

) ( 1

τ Xi
(Xi−1 − Xi) + Si

Xi + Si
− kd

)

=
n∑

i=1

(
4α

τ
+ 2αkd

)
(X∗

i + S∗
i )

(
Xi − X∗

i

) ( Si

Xi + Si
− S∗

i

X∗
i + S∗

i

)

=
n∑

i=1

(
4α

τ
+ 2αkd

) (
Xi − X∗

i

) ( X∗
i Si − S∗

i Xi

Xi + Si

)
.

We will claim that for all solutions (Si (t), Xi (t)) with initial value (Si (0), Xi (0)) ∈
R2+,

LV ≤
n∑

i=1

⎡
⎣− 2

τ
+ max

⎧⎨
⎩

(
1

τ
+ kd

2

)
,

(
2

τ
+ kd

)⎛
⎝1 − X∗

i

X∗
i + S∗

i +4
X∗

i
α

⎞
⎠

⎫⎬
⎭

⎤
⎦α2(Si − S∗

i )2

+
n∑

i=1

⎡
⎣2σ 2 − 2

τ
− 2kd +

(
2

τ
+ kd

)⎛
⎝1 − X∗

i

X∗
i + S∗

i + 4
X∗

i
α

⎞
⎠

⎤
⎦ (Xi − X∗

i )2 + c.

(4.1)

Notice that

n∑
i=1

(
−4α

τ
− 2αkd

) (
Xi − X∗

i

)
(Si − S∗

i )

+
n∑

i=1

(
4α

τ
+ 2αkd

) (
Xi − X∗

i

) ( X∗
i Si − S∗

i Xi

Xi + Si

)

=
n∑

i=1

(
4α

τ
+ 2αkd

) (
Xi − X∗

i

) Si (X∗
i + S∗

i − Si − Xi )

Xi + Si
. (4.2)
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First, we prove for each i ,

(
4α

τ
+ 2αkd

) (
Xi − X∗

i

) Si (X∗
i + S∗

i − Si − Xi )

Xi + Si

≤ max

⎧⎨
⎩

(
1

τ
+ kd

2

)
,

(
2

τ
+ kd

)⎛
⎝1 − X∗

i

X∗
i + S∗

i + 4
X∗

i
α

⎞
⎠

⎫⎬
⎭α2(Si − S∗

i )2

+
(

2

τ
+ kd

)⎛
⎝1 − X∗

i

X∗
i + S∗

i + 4
X∗

i
α

⎞
⎠ (Xi − X∗

i )2.

Suppose first (Xi − X∗
i )(Si − S∗

i ) ≥ 0, which contains three cases.

(a) Xi − X∗
i > 0, Si − S∗

i > 0. In this case, Eq. (4.2) is negative;
(b) Xi − X∗

i < 0, Si − S∗
i < 0. This case also implies Eq. (4.2) is negative;

(c) either Xi − X∗
i = 0 or Si − S∗

i = 0. In this case the Eq. (4.2) is non-positive.

In other words, when (Xi − X∗
i )(Si − S∗

i ) ≥ 0 Eq. (4.1) is true. Next, we prove it is
also true when (Xi − X∗

i )(Si − S∗
i ) < 0. we have two cases.

Case 1): Xi − X∗
i > 0, Si − S∗

i < 0.

If X∗
i + S∗

i ≤ Si + Xi , (4.2) is nonpositive. Then we can get that (4.1) is
true. Otherwise, we have X∗

i + S∗
i > Si + Xi . Then we have

(
−4α

τ
− 2αkd

) (
Xi − X∗

i

)
(Si − S∗

i ) +
(

4α

τ
+ 2αkd

)

× (
Xi − X∗

i

) ( X∗
i Si − S∗

i Xi

Xi + Si

)
<

(
−4α

τ
− 2αkd

) (
Xi − X∗

i

)
(Si − S∗

i )

+
(

4α

τ
+ 2αkd

) (
Xi − X∗

i

) ( X∗
i (Si − S∗

i )

X∗
i + S∗

i

)

=
(

4α

τ
+ 2αkd

)(
X∗

1

X∗
i + S∗

i
− 1

) (
Xi − X∗

i

)
(Si − S∗

i )

=
(

4α

τ
+ 2αkd

)(
1 − X∗

i

X∗
i + S∗

i

) ∣∣Xi − X∗
i

∣∣ ∣∣Si − S∗
i

∣∣

≤
(

2

τ
+ kd

)(
1 − X∗

i

X∗
i + S∗

i

)[
(Xi − X∗

i )2 + α2(Si − S∗
i )2

]

=
(

2

τ
+ kd

)(
1 − X∗

i

X∗
i + S∗

i

)
α2(Si − S∗

i )2

+
(

2

τ
+ kd

)(
1 − X∗

i

X∗
i + S∗

i

)
(Xi − X∗

i )2.

Case 2): Xi − X∗
i < 0, Si − S∗

i > 0.
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If X∗
i + S∗

i ≥ Si + Xi , the (4.2) is nonpositive. Then (4.1) holds. Otherwise,

X∗
i + S∗

i < Si + Xi . If Si > S∗
i + 4

X∗
i

α
, we can get X∗

i <
α(Si −S∗

i )

4 .

(
−4α

τ
− 2αkd

) (
Xi − X∗

i

)
(Si − S∗

i )

=
(

4α

τ
+ 2αkd

) (
X∗

i − Xi
)
(Si − S∗

i )

≤
(

4α

τ
+ 2αkd

)
(Si − S∗

i )X∗
i

≤
(

α2

τ
+ α2kd

2

)
(Si − S∗

i )2

=
(

1

τ
+ kd

2

)
α2(Si − S∗

i )2,

while

(
4α

τ
+ 2αkd

) (
Xi − X∗

i

) ( X∗
i Si − S∗

i Xi

Xi + Si

)
≤ 0.

If Si ≤ S∗
i + 4

X∗
i

α
,

(
−4α

τ
− 2αkd

) (
Xi − X∗

i

)
(Si − S∗

i ) +
(

4α

τ
+ 2αkd

) (
Xi − X∗

i

)

×
(

X∗
i Si − S∗

i Xi

Xi + Si

)
≤ −

(
4α

τ
+ 2αkd

) (
Xi − X∗

i

)
(Si − S∗

i )

+
(

4α

τ
+ 2αkd

)⎛
⎝ X∗

i

X∗
i + S∗

i + 4
X∗

i
α

⎞
⎠(

Xi − X∗
i

)
(Si − S∗

i )

=
(

4α

τ
+ 2αkd

)⎛
⎝1 − X∗

i

X∗
i + S∗

i + 4
X∗

i
α

⎞
⎠∣∣Xi − X∗

i

∣∣ ∣∣Si − S∗
i

∣∣

≤
(

2

τ
+ kd

)⎛
⎝1 − X∗

i

X∗
i + S∗

i + 4
X∗

i
α

⎞
⎠((

Xi − X∗
i

)2 + α2 (
Si − S∗

i

)2
)

=
(

2

τ
+ kd

)⎛
⎝1 − X∗

i

X∗
i + S∗

i + 4
X∗

i
α

⎞
⎠α2 (

Si − S∗
i

)2

+
(

2

τ
+ kd

)⎛
⎝1 − X∗

i

X∗
i + S∗

i + 4
X∗

i
α

⎞
⎠(

Xi − X∗
i

)2
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Therefore

LV ≤
n∑

i=1

⎡
⎣− 2

τ
+ max

⎧⎨
⎩

(
1

τ
+ kd

2

)
,

(
2

τ
+ kd

)⎛
⎝1 − X∗

i

X∗
i + S∗

i + 4
X∗

i
α

⎞
⎠

⎫⎬
⎭

⎤
⎦α2(Si − S∗

i )2

+
n∑

i=1

⎡
⎣2σ 2 − 2

τ
− 2kd +

(
2

τ
+ kd

)⎛
⎝1 − X∗

i

X∗
i + S∗

i + 4
X∗

i
α

⎞
⎠

⎤
⎦ (Xi − X∗

i )2 + c.

where c is defined as before.
It then follows from

E

t∫
0

dV = E

t∫
0

LV dt,

that

lim
t→∞ sup

1

t
E

t∫
0

n∑
i=1

[(
Si (u) − S∗

i

)2 + r2
i

(
Xi (u) − X∗

i

)2
]

du ≤ kσ ,

where r2
i and kσ are defined in the theorem statement. This completes the proof. ��

5 Numerical simulation and discussion

In this section, we carry out numerical simulations to demonstrate the stochastic stabil-
ity of the equilibrium solutions. We choose a cascade of four reactors. Our simulations
agree well with our theoretical analysis in previous Sects. 3 and 4. Performance of the
bioreactor can be affected by noise in certain degree.

5.1 Stochastic stability of the washout and non-washout equilibrium

Choose (0.5, 0.5) as the initial value and set parameters as α = 1, S0 = 1, kd =
0.6, τ = 2 andσ = 0.2.Then we can verify that τ < 1

1−kd
andσ 2 ≤ 2

τ
−2+2kd = 0.2.

By using results from Sect. 3 we know that the equilibrium (1, 0, 1, 0, 1, 0, 1, 0) should
be globally asymptotically stable. Our simulations are shown in Fig. 1, which agree
well with the theoretical result. As seen, the effect of the noise on the stability of the
washout equilibrium is getting more and more obvious as σ 2 increases.

Next we demonstrate the non-washout equilibrium is stochastically stable too. We
choose α = 1, kd = 0.2, τ = 2. After some basic calculation, we know model (1.1)
has a unique positive equilibrium (0.625, 0.268, 0.282, 0.436, 0.109, 0.436, 0.039,

0.361), and
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Fig. 1 Stability of E1. Comparison of the dynamics in deterministic model and stochastic model with
σ = 0.1, 0.2, 0.4, respectively

1

τ
+ kd −

(
1

τ
+ kd

2

)
1

4

4∑
i=1

⎛
⎝1 − x∗

i

x∗
i + s∗

i + 4
x∗

i
α

⎞
⎠ = 0.205.

Then from Sect. 4 the non-washout equilibrium is stable when σ 2 ≤ 0.205.
(0.66, 0.18) is chosen as the initial value and simulation are listed in Fig. 2. In Fig. 3,
we show the case σ 2 > 0.205, in which as seen the non-washout equilibrium is
unstable.

5.2 Performance of the bioreactor

In order to analyse the performance of reactor cascades, we introduce the following
dimensionless quantities: the specific utilisation

U = S0 − S∗
n

X∗
n

1

τ
, (5.1)
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Fig. 2 Stability of E2. Comparison of the dynamics in deterministic model and stochastic model with
σ = 0.01, 0.05, 0.1, respectively
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Fig. 3 Instability of E2. The long time behavior of the stochastic model with σ = 0.5, 0.6 respectively

the yield

Y = X∗
n

S0 − S∗
n
, (5.2)
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Fig. 4 Performance of the bioreactor

the treatment/process efficiency

E = 100 × S0 − S∗
n

S0
, (5.3)

the rate of waste treatment

W = S0 − S∗
n

τ
(5.4)
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and the effective yield

Ye = X∗
n

S0
. (5.5)

For more details about these quantities please see [10] and the references therein.
To show the effects of the performance of reactor cascades by the noise, we also

selected a cascade of four reactors. Figure 4 shows the performance of the fourth
reactor. It suggests that the yield, Y , effective yield (Ye) and rate of waste treatment
(W) all decrease as σ increases from zero; however, the uilization (U) increases with
the noise intensity σ and the treatment (E) decreases when σ increases from zero at
first and then increases as it gets bigger, which implies there is certain value of σ > 0
which corresponds a minimum performance of the reactor, see the subfigures 2–4
of Fig. 4. Also Fig. 4 indicates that both the utilisation and the treatment efficiency
are increasing functions of the residence time, τ ; but yield, rate of waste treatment
and effective yield are decreasing functions of τ . In other words, larger residence time
results in a higher utilisation and the treatment efficiency, but lower yield, rate of waste
treatment and effective yield.
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